skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mason, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. De_Luca, Vincenzo (Ed.)
    BackgroundSubstance use induces large economic and societal costs in the U.S. Understanding the change in substance use behaviors of persons who use drugs (PWUDs) over time, therefore, is important in order to inform healthcare providers, policymakers, and other stakeholders toward more efficient allocation of limited resources to at-risk PWUDs. ObjectiveThis study examines the short-term (within a year) behavioral changes in substance use of PWUDs at the population and individual levels. Methods237 PWUDs in the Great Plains of the U.S. were recruited by our team. The sample provides us longitudinal survey data regarding their individual attributes, including drug use behaviors, at two separate time periods spanning 4-12 months. At the population level, we analyze our data quantitatively for 18 illicit drugs; then, at the individual level, we build interpretable machine learning logistic regression and decision tree models for identifying relevant attributes to predict, for a given PWUD, (i) which drug(s) they would likely use and (ii) which drug(s) they would likely increase usage within the next 12 months. All predictive models were evaluated by computing the (averaged) Area under the Receiver Operating Characteristic curve (AUROC) and Area under the Precision-Recall curve (AUPR) on multiple distinct sets of hold-out sample. ResultsAt the population level, the extent of usage change and the number of drugs exhibiting usage changes follow power-law distributions. At the individual level, AUROC’s of the models for the top-4 prevalent drugs (marijuana, methamphetamines, amphetamines, and cocaine) range 0.756-0.829 (+2.88-7.66% improvement with respect to baseline models using only current usage of the respective drugs as input) for (i) and 0.670-0.765 (+4.34-18.0%) for (ii). The corresponding AUPR’s of the said models range 0.729-0.947 (+2.49-13.6%) for (i) and 0.348-0.618 (+26.9-87.6%) for (ii). ConclusionThe observed qualitative changes in short-term substance usage and the trained predictive models for (i) and (ii) can potentially inform human decision-making toward efficient allocation of appropriate resources to PWUDs at highest risk. 
    more » « less
  2. Substance use is a global issue that negatively impacts millions of persons who use drugs (PWUDs). In practice, identifying vulnerable PWUDs for efficient allocation of appropriate resources is challenging due to their complex use patterns (e.g., their tendency to change usage within months) and the high acquisition costs for collecting PWUD-focused substance use data. Thus, there has been a paucity of machine learning models for accurately predicting short-term substance use behaviors of PWUDs. In this paper, using longitudinal survey data of 258 PWUDs in the U.S. Great Plains collected by our team, we design a novel GAN that deals with high-dimensional low-sample-size tabular data and survey skip logic to augment existing data to improve classification models' prediction on (A) whether the PWUDs would increase usage and (B) at which ordinal frequency they would use a particular drug within the next 12 months. Our evaluation results show that, when trained on augmented data from our proposed GAN, the classification models improve their predictive performance (AUROC) by up to 13.4% in Problem (A) and 15.8% in Problem (B) for usage of marijuana, meth, amphetamines, and cocaine, which outperform state-of-the-art generative models. 
    more » « less